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Abstract

Undergraduates use a spike sorting routine developed in Octave to analyze the spiking activity generated from mechanical stim-
ulation of spines of cockroach legs with the inexpensive SpikerBox amplifier and the free software Audacity. Students learn the
procedures involved in handling the cockroaches and recording extracellular action potentials (spikes) with the SpikerBox appa-
ratus as well as the importance of spike sorting for analysis in neuroscience. The spike sorting process requires students to
choose the spike threshold and spike selection criteria and interact with the clustering process that forms the groups of similar
spikes. Once the spike groups are identified, interspike intervals and neuron firing frequencies can be calculated and analyzed.
A classic neurophysiology lab exercise is thus adapted to be interdisciplinary for underrepresented students in a small rural
college.
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INTRODUCTION

Northern NewMexico College (NNMC) is a small rural col-
lege with a 71% Hispanic and 10% Native American popula-
tion. Despite limited resources, we have created courses to
introduce students to neuroscience and in particular neuro-
physiology, which is typically inaccessible at institutions
like NNMC because of cost. One component of a course
involving the study of how sensory information is encoded
by the firing rate of action potentials (rate coding) led to
the development of a project where cockroaches (mostly
Blaptica dubia) were used to conduct low-cost neurophysio-
logical experiments. Theobald et al. (1) note that underrepre-
sented students learn better when a “high-quality” active
component of a class is used.

Neuroscience programs often require expensive equip-
ment and institutional research clearance for protocols
when vertebrate organisms are used. An alternative is to use
invertebrates. Although invertebrates have a smaller number
of identifiable neurons, the neurons can remain viable for
long periods (2). Other authors have used earthworms (3)
and crustaceans (2) to teach principles of neuronal excitabil-
ity and synaptic communication in the student laboratory.
Linder and Palka (4) discuss an inexpensive apparatus for re-
cording action potentials in cockroaches. Titlow et al. (5) and
Ramos et al. (6) developed biological preparations using the
common American cockroach, Periplaneta americana, for
teaching undergraduate neurophysiology.

We use B. dubia (orange-spotted cockroach) and
Gromphadorhina portentosa (hissing cockroach) as our ex-
perimental organisms to study sensory electrophysiology.
When it comes to electrophysiology, the cockroach is very
suitable since it is incredibly resilient and its legs can be
studied for hours after detachment from the thorax (4).
Teaching neurophysiology in a laboratory setting can be
done inexpensively with the SpikerBox apparatus (7), which
we used to record sensory action potentials with extracellu-
lar pin electrodes. The SpikerBox is produced by Backyard
Brains (https://backyardbrains.com). Other authors have
also used the SpikerBox; for example, Dagda et al. (8) used it
to study electrophysiological signals when stimulating the
cerci or isolated legs of crickets. Nguyen et al. (9) used the
SpikerBox to study the response of the descending contralat-
eral movement detector neuron in a grasshopper’s neck to
visual stimuli.

An important component of neuroscience research
requires isolating the activity of individual neurons with
extracellular electrodes. Electrodes record signals from
many neurons close to the electrode tip that fire action
potentials or spikes. The spike shape received from an indi-
vidual neuron is determined by the unique morphology of
the neuron’s dendritic tree as well the spatial distance and
geometric orientation to the recording electrode (10).
Mathematically and in neuroscience, spike sorting is the
grouping of spikes and the individual neurons that produced
them into clusters based on their shapes.
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Undergraduates studying neuroscience traditionally
spend a significant amount of time learning the biological
preparation (cockroach handling, dissections) in which to
perform electrophysiological experiments and often use
analysis software as “black boxes” to analyze the signals
that are generated. In addition to introducing students to
the principles of action potentials, our experiment advan-
ces the learning of these mechanical procedures with com-
putational analysis. Kazar and Elrod (11) emphasize the
need for interdisciplinary training for students to be suc-
cessful in future STEM careers. We selected this experi-
ment because it allows students to
1. prepare a cockroach leg for extracellular neurophys-

iological readings;
2. monitor and record spiking activity evoked through

mechanical stimulation of a cockroach leg with a
SpikerBox and a computer;

3. analyze and sort the various types of action potentials
by using and interacting with the free code written in
Octave; and

4. learn how rate coding or the average neuron firing
rate can encode sensory information.

After the experiment, students will have learned the pro-
cedures for handling cockroaches, how to use hardware and
software tools for data acquisition, and the importance of
spike sorting for analysis.

Our experiment engages the student in the computational
facets of spike sorting, which are often overlooked. Students
interact with the code and choose different selection criteria
for spike sorting as well as the size and number of the spike
sorting groups.

We thus expose undergraduates to interdisciplinary
research methods in neurophysiology with low-cost
approaches at a small rural minority-serving institution,
research they would otherwise only receive at a large
university.

METHODS

Northern New Mexico College maintained a self-breeding
facility with 100–200 B. dubia cockroaches. Students first
selected a B. dubia female and anesthetized the insect in ice
water for 1–2min. A metathoracic leg was severed below the
trochanter on the femur with scissors. The amputated leg
was then placed on top of a cork, and electrode leads from a
SpikerBox were inserted into the cockroach leg’s femur.

The SpikerBox amplifies the signal 880 times. Marzullo
and Gage (7) include an Excel list of components that can
be assembled for under $33 along with a detailed circuit
diagram.

After allowing the leg to warm up for 2min, students
recorded extracellular action potential activity with
Audacity (2.3.1) running on a laptop while mechanically
stimulating tactile spines on a cockroach leg with a plastic
rod. Action potentials are displayed as spikes above the base
neural activity. Figure 1 shows an example of a severed leg
with electrodes. Students found that less electrical noise was
generated when the spines were stimulated with a plastic
or wooden instrument instead of a metal instrument. A
Faraday cage was also used to minimize any electrical inter-
ference, and the laptop was not connected to the electri-

cal outlet during the recording, as recommended by Marzullo
and Gage (7). After the experiment was performed, students
exported a .wav file of collected data from Audacity to GNU
Octave (5.1.0) for analysis using our own spike sorting code.
We used Octave because it is intended for numerical compu-
tations, and students can download the software free of
charge at https://www.gnu.org/software/octave. We do note
that the code can also be run with MATLAB. The spike sorting
algorithm itself can be downloaded free of charge at https://
github.com/davytorres/Spike-sorting-algorithm.

RESULTS

Each spine on the leg of the cockroach is innervated by a
single sensory neuron (12, 13). However, many sensory
neurons will fire spontaneously in addition to the neuron
evoked upon spine stimulation. Because many of the
spines and hairs are likely stimulated simultaneously sim-
ply by the air moving around the preparation, spike sort-
ing is necessary to identify action potentials generated by
individual sensory neurons (14). The process of identifying
individual action potentials is compounded by the fact
that multiple action potentials can occur at the same time.
In addition, one must account for the presence of noise in
the voltage signal.

A spike sorting algorithm involves setting a threshold volt-
age to filter out noise and to select prominent action poten-
tials; reducing the dimensionality of the action potentials to
a few features by selecting criteria manually or by using the
principal component analysis (PCA) algorithm (15); and
selecting clusters of similar action potentials in the reduced
dimension space. Authors have used algorithms to separate
action potentials that occur together (16). Our algorithm
does not attempt to separate overlapping spikes and assumes
there exist sufficient waveforms in the recorded signal that
come from individual neurons that do not overlap (e.g., 1,174
waveforms were identified in the recording from 45s to
100 s). Once action potentials of similar waveform have been
found, the interspike interval (ISI) between similar spikes
can be computed. The ISI can then be used to better under-
stand the principles of how information is encoded by
neurons.

Figure 1. Severed G. portentosametathoracic leg with electrodes inserted
into the femur of the leg.
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Two fundamental codes have been suggested: a rate code
and a spike time code. In the rate code, information is
encoded as the average firing rate of neurons over a specified
time interval (17, 18). Generally, the rate of action potential
generation is proportional to the strength of a sensory stimu-
lus. Stronger stimuli result in higher firing frequencies
(shorter ISIs), and weaker stimuli result in lower firing fre-
quencies (longer ISIs). In contrast, in the spike timing code
information is encoded in ISI fluctuations and how neurons
fire relative to each other (19). Adaptation can also occur in
neural systems. To encode efficiently, a neural system must
change its coding strategy as stimuli change (20). For exam-
ple, the firing rate may decrease after repeated exposure to a
stimulus. Our analysis is based on the rate code and finding
the firing rate of neurons. The next section discusses how
individual spikes are identified from a recording so this fir-
ing frequency can be computed.

Spike Sorting

The use of different features for spike sorting has been
explored by Bestel et al. (21). Authors have also made their
spike sorting codes available (22–24). Our Octave code allows
students to choose their own criteria to sort spikes. Figure 2
shows an extracellular spike extracted from the recording. In
contrast to the intracellular spike, the extracellular spike is
inverted: a large drop in voltage is followed by a positive volt-
age peak (25). Although the timescale is similar for both in-
tracellular and extracellular spikes (�1ms), the amplitude of
the extracellular peak can be an order of magnitude less than
the intracellular spike.

Spike sorting begins by selection of a minimum threshold
amplitude. Spikes must reach this voltage to be considered
for further spike selection. Students can then select any com-
bination of 2 features from 11 different features to character-
ize a single action potential waveform (see Fig. 2): 1) positive
spike height, 2) negative spike height, 3) positive half-width,
4) positive full width, 5) negative half-width, 6) negative full

width, 7) area under positive branch, 8) area under negative
branch, 9) combined area under both positive and negative
branches, 10) time between peaks, and 11) combined height
(positive spike height þ negative spike height). The PCA
algorithm can also be used in lieu of these choices. PCA
determines new orthogonal coordinate axis directions
such that the spike variations are greatest in these directions
(15, 26).

The purpose of using selection criteria is to reduce the
dimensionality of the spike data to usually two features in
order to apply a sorting or clustering algorithm. Features
with more variability, which can be measured with the coef-
ficient of variation, are preferred since variability can be
exploited to distinguish and sort spikes into different catego-
ries. The code does output and rank the coefficient of varia-
tion for each of these selection criteria.

Assume there are n spikes with two (x and y) features:
fxij1 � i � ng, fyij1 � i � ng. We normalize each of the fea-
ture scores before computing the distance between the
scores,

zxi ¼ ðxi � �xÞ=sx; zyi ¼ ðyi � �yÞ=sy ð1Þ
where �x and �y are the means and sx and sy are the standard
deviations of the x and y scores, respectively. The Euclidian
distance is then used to compute the distance di,j between
two spikes,

di;j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zxi � zxj
� �2 þ zyi � zyj

� �2
r

ð2Þ

The clustering algorithm searches for groups of spikes
that are close neighbors according to the distance defined by
Eq. 2. Our developed clustering algorithm uses an interactive
process. A radius is drawn around one spike score in a
densely populated region of scores. Spikes within the radius
are included in the clustering group. Subsequently, radii are
drawn around newly enlisted members of the clustering
group, which themselves recruit new members within their
radii. The code generates a figure showing which color-
coded scores are currently in the spike group or cluster and
queries the student to determine whether additional scores
should be added. The process is repeated until the student is
satisfied that a representative set of similar scores (and
therefore similar spikes) have been established. The search
radius that is used to enlist new scores can also be adjusted
during the iterative process. If the student chooses, addi-
tional clusters can be added. The algorithm then identifies a
new dense center of scores sufficiently separated from any
previously cluster center. Students can also adjust the mini-
mum distance new clusters need to be separated from exist-
ing clusters.

Let us illustrate the process with an actual recorded signal
from a G. portentosa leg. Figure 3A displays a total of 284 s of
recorded signal collected from a G. portentosa leg. Three dif-
ferent spines were mechanically probed with the same stim-
ulus (strength and duration) from 28s to 150 s, from 188 s to
228 s, and from 254 s to 284 s, respectively. These intervals
are labeled with arrows and numerals in Fig. 3A. The record-
ing used a sampling rate of 44.1kHz.

During the interactive process, students choose the time
range from the entire recording that will be analyzed, the
spike threshold, the spike selection criteria, the number of

Figure 2. Features from an extracellular spike that can be used for spike
selection. The x-axis refers to time, and the y-axis refers to voltage. 1,
Positive spike height; 2, negative spike height; 3, positive half-width; 4,
positive full width; 5, negative half-width; 6, negative full width; 7, area
under positive branch; 8, area under negative branch; 9, combined area
under both positive and negative branches; 10, time between peaks; 11,
combined height (positive spike height þ negative spike height).
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spikes in a spike group or cluster, and the number of distinct
spike groups. An example of a code simulation and this
interactive process is provided in the APPENDIX. Participating
students also took a survey to evaluate the exercise and pro-
vide feedback.

Figure 3A highlights in cyan, and Fig. 3B displays a
selected recording from 45 s to 100 s generated from the me-
chanical stimulation of the first spine. A threshold of 0.145V
(amplified) is used to filter low-amplitude spikes, and the
PCA algorithm is selected to automatically develop the selec-
tion criteria. Figure 4A plots the spike selection criteria
scores that are generated with the PCA algorithm. PCA 1 and
PCA 2 represent score values in the directions of highest vari-
ation. Spikes are matched based on proximity and colored
similarly (e.g., red and green). There are 197 spikes in the red
cluster and 133 spikes in the green cluster. These were
selected from a total of 1,174 cyan spikes that met the thresh-
old criteria. The code also overlays the correspondingmatch-
ing spikes in Fig. 4B with a plot of an average group spike
shown in black so students can visually compare the
matched spikes.

Figure 5A plots the normalized selection criteria scores
ðzxi ; zyi Þ from the same recording selection and threshold as
Fig. 4. However, the normalized positive half-width and the
positive spike height are used for the selection criteria (see
Fig. 2). The corresponding spikes are overlaid in Fig. 5B.
There are 142 spikes in the red cluster and 145 spikes in the
green cluster, which were chosen from a total of 1,174 cyan
spikes that met the threshold criteria. There are noticeable
differences in the spikes selected in Fig. 4 and Fig. 5, so the
spike selection criteria do affect the composition of the spike
groups.

To validate the analysis protocol developed in Octave,
we analyzed the same data set with a commercially availa-
ble software for analyzing electrophysiological signals,
ADInstruments LabChart 8.1.13—Spike Histogram Module

2.6.2 (ADInstruments NZ Limited, Dunedin, New Zealand).
A figure similar to Fig. 5 was reproduced with LabChart and
compared to the Octave code for a very short recording for
code validation. Figure 6 plots the selection scores and the
matched spikes from the Octave code, and Fig. 7 plots the
corresponding information from LabChart.

Figure 3. A: the total signal recorded over 284 s and the times when spine
stimulation was initiated (as noted by arrows and 1, 2, and 3). B: the
selected subset of the recording from mechanical stimulation of the first
spine from 45s to 100 s, which is also highlighted in cyan in the entire re-
cording in A. The threshold chosen (amplified 0.145V) is also drawn as a
horizontal red line in B. The maximum amplitude of a spike needs to be
greater or equal to the threshold to be considered for further spike
selection.

Figure 4. Feature scores ðzxi ; zyi Þ based on the principal component analy-
sis (PCA) algorithm are plotted in A. Similar scores are color-coded to illus-
trate the clustering process. Two different groups (red and green) are
identified. The cyan circles represent spikes that have not been associ-
ated with a spike group. The spikes are extracted from the recording and
overlaid in B so students can visualize the similarities and differences in
the groups. The spike group average is also plotted in black in B.

Figure 5. Feature scores ðzxi ; zyi Þ based on the positive half-width and the
positive spike height are plotted in A. Similar scores are color-coded to
illustrate the clustering process. Two different groups (red and green) are
identified. The cyan circles represent spikes that have not been associ-
ated with a spike group. The spikes are extracted from the recording and
overlaid in B so students can visualize the similarities and differences in
the groups. The spike group average is also plotted in black in B.
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Computing Interspike Intervals and Frequencies

Interspike intervals can be computed by finding the time
between successive spikes within similar spike groups.
Figure 8 shows a 2-s recording selection that has highlighted
the red and green spikes from Fig. 4B in the original
recording.

Once the interspike intervals have been computed for
each spike group, firing frequencies can be computed by tak-
ing the reciprocal of the interspike intervals. Figure 9, A and

C, show the time history of the frequency and the ISI for the
red spikes, respectively, from Fig. 4 when the first spine is
mechanically stimulated from 45 s to 100 s. The average
value of each spike group is plotted in black. Figure 9, B and
D, show the firing frequency distribution histogram and the
ISI distribution histogram, respectively.

Figure 10 shows the frequency and ISI time history and
corresponding distribution histograms when the third spine
of the hissing cockroach (G. portentosa) is mechanically
stimulated from 254 s to 260 s. In contrast to Fig. 9, we see
that the firing frequency decreases over time.

The differences in the firing rate in Fig. 9 and Fig. 10 and
differences in how the firing rate changes over time illustrate
that different spines will evoke different electrophysiological
responses.

Survey Results

A survey was administered to eight students (7 biology
students and 1 math student) who participated in the com-
putational spike sorting exercise in March 2019. Table 1
shows the average scores. Students rated each question from
1 to 5, where 1 was the lowest and 5 was the highest. A couple
of students found the process of uncommenting sections of
the code confusing. We have since changed the code, so stu-
dents input information on the Octave command line
instead of changing parameters and lines in the actual code.

DISCUSSION

We have devised a low-cost process that can extract and
analyze neural activity from cockroach legs using the output
from a SpikerBox apparatus and Audacity. The analysis is
performed by setting parameters and interacting with a code
developed in Octave. The process allows undergraduates to
participate in all phases of a neurophysiology experiment
(cockroach handling, data collection, and data analysis). We
note that our Octave algorithm can analyze any extracellular
spiking signal and not just recordings from cockroaches.

The interactive algorithm allows students to select a
threshold amplitude and spike features for spike sorting.

Figure 6. The feature scores generated from the unnormalized positive
half-width and the positive spike height are plotted with the Octave code
for a short recording (A). In addition, the corresponding spikes are overlaid
and plotted (B).

Figure 7. The feature scores generated from the unnormalized positive
half-width and the positive spike height are plotted with LabChart for a
short recording (left). In addition, the corresponding spikes are overlaid
and plotted (right).

Figure 8. Two seconds of the recording from 45s to 47s with the red and
green spikes from Fig. 4B is highlighted. The interspike interval is com-
puted by finding the time difference between 2 successive spikes of the
same color.
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Figure 4 shows the spikes that are selected when the princi-
pal component analysis algorithm is used, and Fig. 5 shows
how the spike half-width and height selections change the
selected spike groups. Students can also choose the number

and size of the spike groups during the clustering phase of
the algorithm. A survey showed that the activity and the
code interaction increased students’ understanding of facets
of a spike sorting algorithm.

Figure 9. The first spine of the hissing cockroach
is mechanically stimulated. The firing frequency
vs. time for the red spikes from Fig. 4 is shown in
A, and the interspike interval (ISI) vs. time is plot-
ted in C. The average values of frequency and ISI
are plotted in black. The distribution histograms
of the firing frequency and the ISI are shown in B
and D, respectively.

Figure 10. The third spine on the hissing cock-
roach is mechanically stimulated. The firing fre-
quency vs. time is shown in A, and the interspike
interval (ISI) vs. time is plotted in C. The corre-
sponding distribution histograms are shown in B
and D, respectively. Differences between this fig-
ure and Fig. 9 show that different electrophysio-
logical responses can be evoked depending on
the spine that is mechanically stimulated on the
cockroach leg.
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The activity also allows students to explore rate coding.
Figures 9 and 10 show that the mechanical stimulation of
different spines affects the firing rate of neurons and how
the firing rate changes over time. In contrast to Fig. 9, the fir-
ing rate decreases over time in Fig. 10.

Our design makes neurophysiology accessible to under-
graduates at colleges that may lack the equipment and fund-
ing of larger universities. The spike sorting algorithm itself
as well as an example .wav recording of spiking activity
can be downloaded free of charge at https://github.com/
davytorres/Spike-sorting-algorithm. The YouTube video
https://www.youtube.com/watch?v=kN8cpM_rOuw explains
how to run the code. The design of these experiments could
also be modified to demonstrate the effects that various
drugs and different temperatures have on the firing rate of
these sensory neurons. Since this is the first instance of the
computational exercise, we would also pursue integrating
the spike sorting activity in a regular course.

APPENDIX

Enter recording filename (.wav format) Experiment.wav
Press Ctrl C together anytime to end analysis
Length of recording in seconds 284.2817007
Total number of data points 12536823
Sampling rate in Hertz 44100.0000000
Time step inmilliseconds 0.0226757
Maximum absolute height of spikes 0.556183

��������������� Selection parameters �����������������

1: Height 2: Negative height
3: Half positive width 4: Full positive width
5: Half negative width 6: Full negative width
7: Positive area 8: Negative area 9: Total area
10: Distance between positive and negative peaks

�����������������������������������������������������

Enter 0 for manual selection or 1 to use Principal
Component Analysis 1

Enter 1 to plot total signal, 0 to continue 1
Since the recording is very large 12536823
Plot every 10 points of recording
Plotting total signal
Start time needs to be greater than 0 and less than total

time 284.2817007
Enter start time (in seconds) to begin analysis 45
End time needs to be greater than start time 45 and less

than total time 284.2817007
Enter end time (in seconds) at which to end analysis 100
Spike threshold needs to be greater than 0 and less than

themaximum spike height 0.5561829

Enter minimum threshold for spikes to be considered for
analysis .145

Threshold in spike sorting algorithm 0.1450
Extracting recording from start time to end time
Are you satisfied with your choice of the spike threshold

and start and end times for analysis?
Enter 0: No (programwill end and can be rerun) OR 1: Yes 1
Finding location of peaks
Number of peaks (positive or negative) found above

threshold 400
Number of peaks (positive or negative) found above

threshold 800
Number of peaks (positive or negative) found above

threshold 1200
Number of peaks (positive or negative) found above

threshold 1600
Number of peaks (positive or negative) found above

threshold 2000
Number of peaks (positive or negative) found above

threshold 2400
Number of peaks above threshold 1174
Coefficient of variation of Time between peaks is

0.789149
Coefficient of variation of Negative area is 0.575886
Coefficient of variation of Negative height is 0.498964
Coefficient of variation of Full negative width is 0.288835
Coefficient of variation of Half negative width is

0.258522
Coefficient of variation of Total area is 0.219929
Coefficient of variation of Positive area is 0.21833
Coefficient of variation of Full positive width is 0.193286
Coefficient of variation of Half positive width is 0.181045
Coefficient of variation of Height is 0.131702
First selection criteria PCA Score 1
Second selection criteria PCA Score 2
Normalizing scores by subtracting mean and dividing by

standard deviation
Begin clustering algorithm
Finding distances between scores
Finished calculating distance up to peak 400 out of 1174

peaks
Finished calculating distance up to peak 800 out of 1174

peaks
End finding distances between scores
Adding points to cluster 1
Horizontal and vertical range of cluster 1 red scores:

3.255033e-02 6.010697e-03
Number of points in cluster 1 is 46
Refer to figure. Add to cluster? Yes: 1, No: 0 to stop adding

points to cluster 1
Horizontal and vertical range of cluster 1 red scores:

6.310170e-02 1.939177e-02
Number of points in cluster 1 is 132

Table 1. Survey results from the spike sorting exercise

Did you find the activity helpful in explaining spike sorting and why it is important? 4.6
Did you find it useful to interact with the code and change parameters? 5
What is your interest in exploring and understanding the coding behind the spike sorting algorithm in more detail? 4.4
What is your interest in doing research with neurophysiology with invertebrates in the future? 3.9

Values are average scores. Students rated each question from 1 to 5, where 1 was the lowest and 5 the highest score.
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Refer to figure. Add to cluster? Yes: 1, No: 0 to stop adding
points to cluster 1

Horizontal and vertical range of cluster 1 red scores:
9.443108e-02 3.438174e-02

Number of points in cluster 1 is 197
Refer to figure. Add to cluster? Yes: 1, No: 0 to stop adding

points to cluster 0
Enter 1 to construct a new cluster, 0 to stop adding clus-

ters 1
Adding points to cluster 2
Horizontal and vertical range of cluster 2 green scores:

5.791398e-02 4.106001e-01
Number of points in cluster 2 is 61
Refer to figure. Add to cluster? Yes: 1, No: 0 to stop adding

points to cluster 1
Horizontal and vertical range of cluster 2 green scores:

1.057439e-01 4.640091e-01
Number of points in cluster 2 is 133
Refer to figure. Add to cluster? Yes: 1, No: 0 to stop adding

points to cluster 0
Enter 1 to construct a new cluster, 0 to stop adding clus-

ters 0
Overlaying spikes
Press enter to continue
Plotting time range and spike types
Number of types of spikes 2
Press enter to continue
Calculating interspike intervals and frequencies
Minimum frequency used 10
Maximum frequency used 120
Total number of frequencies is 196 for group 1
Total number of frequencies is 132 for group 2
Creating plots for group 1
Standard deviation of Interspike Interval scores for

Group 1 is 63.20ms
Total number of interspike intervals is 60 for group 1
Plotting information for group 1
Press enter to continue
Creating plots for group 2
Standard deviation of Interspike Interval scores for

Group 2 is 68.21ms
Total number of interspike intervals is 22 for group 2
Plotting information for group 2
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