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Abstract It has long been known that individuals will engage in
voluntary inhalation of volatile solvents for their rewarding effects.
However, research into the neurobiology of these agents has lagged
behind that of more commonly misused drugs such as psychostimu-
lants, alcohol, and nicotine. This imbalance has begun to shift in recent
years as the serious effects of misused inhalants, especially among
children and adolescents, on brain function and behavior have become
appreciated and scientifically documented. In this review, we discuss
the physicochemical and pharmacological properties of toluene, a rep-
resentative member of a large class of organic solvents commonly used
as inhalants. This is followed by a brief summary of the clinical and
preclinical evidence showing that toluene and related solvents produce
significant effects on brain structures and processes involved in the
rewarding aspects of drugs. This is highlighted by tables summarizing
toluene’s effect on behaviors (e.g., reward, motor effects, learning,
etc.) and cellular proteins (e.g., voltage and ligand-gated ion channels)
closely associated with the actions of misused substances. This review
not only demonstrates the significant progress that has been made
in understanding the neurobiological basis for solvent misuse but
also reveals the challenges that remain in developing a coherent
understanding of this often overlooked class of drugs of abuse.
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1. General

Toluene (also known as toluol, methylbenzene, and
phenylmethane) is an organic solvent widely used in
many industrial processes including plastic production,
chemical synthesis, and gasoline manufacturing. A volatile
liquid (i.e., it becomes vapor at room temperature), toluene
produces psychoactive effects when intentionally inhaled
in pure form or from numerous commercial products
(e.g., solvents, gasoline, paints, varnishes, paint thinners,
adhesives, inks, among other products) [7].

�This article is a part of a Special Issue on “Advances in the
Neurobiological Basis of Inhalant Abuse.” Preliminary versions of the
papers featuring this special issue were originally presented at the 4th
Meeting of the International Drug Abuse Research Society (IDARS)
held in Mexico City, April 15–19, 2013.

Figure 1: Chemical and physical properties of toluene.
BP: boiling point; MP: melting point; TLV-TWA: threshold
limit value–time-weighted average: an allowable exposure
concentration averaged over a normal 8-hour workday
or 40-hour workweek; log Ko/w: octanol/water partition
coefficient.

1.1. Physicochemical properties

Toluene’s structure and physicochemical properties are
shown in Figure 1. An aromatic hydrocarbon, toluene
is lighter than water in its liquid form, but three times
heavier than air as a vapor, has a high affinity for lipids (log
octanol/water partition coefficient = 2.73), and is flammable
with a low flash point (the lowest temperature at which it can
vaporize to form an ignitable mixture in air) of 4.4 °C [1].
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1.2. Exposure

Individuals can be exposed to low toluene concentrations
when they use household/school products or fill the car with
gasoline, but these activities generally do not pose signifi-
cant health risks when performed in well-ventilated areas.
Occupational exposure in workplaces such as factories,
workshops or refineries usually occurs several hours a day,
five days a week. Regulations exist to prevent physiological
and behavioral adverse consequences and although they
vary among countries, safe exposure limits are usually in
the range of 10–100 ppm. The immediately dangerous to life
and health limit (IDLH) has been estimated at 500 ppm [72].
In spite of this, people who misuse toluene-based products
are exposed to concentrations of several thousands ppm
following an intermittent pattern of inhalation [68,84].

Several methods are used for voluntarily inhaling
toluene-based products: “huffing” refers to breathing fumes
from a solvent-soaked rag or tissue paper that is held in
a hand and placed near the nose and mouth, “sniffing”
is the direct nasal inhalation from containers, “bagging”
refers to breathing fumes from substances placed in a bag,
and “cuffing” means inhaling vapors from cuffs or sleeves
soaked with solvents and raised to the mouth and nose [33].
In Australia, “chroming” is used as synonymous with
inhaling paint sprays, which contain toluene and propellant
gases [88]. Using any of these methods, inhalant effects
appear very quickly, usually within seconds, and they last
from 15 min to 60 min. In order to increase the duration of
effects, users repeat the exposure to maintain the desired
level of intoxication.

1.3. Metabolism

Toluene is rapidly absorbed through the lungs. Gastrointesti-
nal and dermal absorption also occurs. Once absorbed, it is
distributed to highly perfused lipid-rich organs. Because of
its high affinity for lipids, toluene can readily cross the brain
blood barrier and the placenta. As perfusion in the brain is
very high, the brain’s toluene concentration is also high in
this region. Most inhaled toluene (95%) is metabolized in
the liver first to benzyl alcohol which is by turn oxidized to
benzoic acid that is then conjugated with glycine to form
hippuric acid. Conversion to cresol is a minor pathway [2].
Hippuric acid is dissociated in hippurate anions and protons.
Protons are titrated by bicarbonate and some of the anions
are excreted in the urine with ammonium. After binge
toluene exposure, there is an excess of hippuric acid,
which can produce the excretion of not only ammonium,
but also sodium and potassium combined with hippurate
anions, resulting in a metabolic acidosis and hypokalemia.
Low levels of potassium are associated with weakness,
muscle spasticity, cardiac arrhythmias, and other serious
complications. The rate-limiting step in toluene metabolism
is conversion to benzyl alcohol through cytochrome P450 in

Table 1: Effects of toluene exposure.
Acute effects Chronic effects

– Irritation of eyes and
respiratory pathways
– Initial euphoria; excitation
– Emotional liability: sudden
mood changes
– Dizziness
– Slurred speech
– Blurred vision
– Lack of motor coordination
– Illusions; hallucinations
– Muscle spasticity

– Cognitive impairments (e.g.,
memory loss, difficulty in
concentrating, and attention deficit)
– Diffuse cerebellar atrophy
– White matter abnormalities,
particularly around brain ventricles
– Ventricular enlargement
– Loss of muscle strength
– Cerebellar ataxia which leads to
impaired motor coordination
– Hearing loss; sight impairment;
nystagmus

the liver. Several P450 isoenzymes are involved in toluene
metabolism, among which CYP2E1 has been described as
the most active in forming benzyl alcohol [71] and one
which can be induced by repeated toluene exposure [70].

2. Effects: the clinical evidence

Toluene is the most commonly misused solvent and also
the best studied, both in terms of behavioral effects and
action mechanisms. Acute and chronic effects of toluene are
summarized in Table 1. Briefly, toluene intoxication resem-
bles ethanol intoxication in some aspects because toluene
produces an initial euphoria and excitation, followed by a
more prolonged inhibition. Motor incoordination, dizziness,
relaxation, and lightheadedness are also characteristic of
toluene intoxication. Unlike other central nervous system
(CNS) depressant drugs, toluene produces illusions and
hallucinations [34,66]. Of particular concern is that even
acute inhalation can lead to life threatening conditions
due to poor oxygenation, cardiac arrhythmias, and other
complications associated with hypokalemia. “Sudden
sniffing death” has been documented since the 1970s [8,
20] and can be caused by cardiac arrhythmias, hypothermia,
hypoxia or a combination of these factors [16].

Long-term effects of toluene inhalation vary depending
on age, patterns of use (duration and frequency), misused
products, and concomitant exposure to other drugs. Chronic
irritation of eyes and respiratory airways is common. Heavy
long-term toluene abuse has been associated with general
cognitive impairments (e.g., memory deficits, difficulty to
concentrate, etc.), decreased IQ, increased impulsivity, and
impaired judgment [53,99]. Imaging studies have shown
that toluene chronic exposure can lead to neurobiological
abnormalities, which have been related to white matter
damage (leukoencephalopathy). Interestingly, in a study
using proton magnetic resonance spectroscopy, axonal
damage, rather than demyelination, was found [3].

A well-described complication of toluene exposure is
renal tubular acidosis. Although it can happen after an
acute binge episode of intentional toluene inhalation, it is
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more frequent in chronic users [70]. Renal failure can also
occur, and it is attributed to acute tubular necrosis caused
by hypotension or possibly rhabdomyolysis. Liver toxicity
may also be a consequence of toluene exposure [67].

Toluene produces tinnitus and can cause hearing loss
after chronic exposure. Hearing frequencies affected by
toluene are different from those affected by noise but both
factors can act synergistically to diminish hearing [42].

Due to its lipophilic nature, toluene crosses biological
membranes easily, including the placental barrier. If inhala-
tion occurs during pregnancy, the fetus can be affected with
developmental disorders, physical malformations or even
death. A fetal solvent syndrome (FSS), analogous to the
fetal alcohol spectrum disorder (FASD), has been described.
Thus, infants born from mothers who misused toluene-based
products can have smaller heads, a thin upper lip, lower set
ears, and other signs similar to what has been described for
FASD. Follow-up studies of children exposed during gesta-
tion to solvents show growth retardation, language impair-
ment, and cerebellar dysfunction (reviewed in [16,50]).

Although the clinical effects of toluene are relatively
well known, many studies have analyzed the damages
caused by inhalation of toluene-based products rather
than toluene itself. Human studies are limited by ethical
concerns and the occurrence of confounding variables
such as malnourishment and concomitant use of other
drugs. Because of this, animal studies have been very
valuable to determine the cause-effects relationships
between toluene exposure, behavior, and sites of action.
Also, under controlled experimental conditions, it has been
possible to establish concentration-dependent effects.

3. Preclinical evidence

3.1. Neurobehavioral studies

Most behavioral studies have been done in rodents. Of spe-
cial interest for this review are those that used binge patterns
of toluene exposure either acutely or chronically, but many
of these effects have also been described for conditions of
prolonged exposures to low toluene concentrations. Some of
the most representative studies are summarized in Table 2.

Being a misused drug, toluene has reinforcing effects.
This has been shown using the conditioned preference place
procedure [43,46,58], intravenous self-administration [13],
and intracranial self-stimulation [91]. Inhaled toluene acts as
a robust discriminative stimulus [85,86] and also produces
CNS depressant-like [15,45,77], amphetamine-like [14],
and PCP-like discriminative effects [25]. Similar to other
CNS depressant drugs, toluene has anxiolytic-like proper-
ties [24,63,74], anticonvulsant effects [26,29,31,35,96],
and impairs locomotor coordination [28,89]. It also exerts
antidepressant-like actions [39] and a biphasic locomotor
response; that is, increased and decreased activity at low
and high concentrations, respectively [9,17,27,78]. The

detrimental effects on learning, short-term and long-term
memory produced by toluene are also well documented [54,
60,61,69,94]. A species-specific effect is observed regard-
ing nociception because toluene increases the response to
a noxious stimulus in mice [38], but has antinociceptive
effects in rats [54]. Hypothermia [30,48,73] and tachycardia
have also been described after toluene exposure [49].

There are relatively few studies concerning tolerance
development and sensitization after chronic toluene
exposure. The most consistent finding is sensitization
to hyperlocomotion effects [9,23,61]. As in humans,
prenatal exposure to toluene has been associated with
malformations [18], growth retardation [55], delayed
reflexes [51], and attention deficit in pups [62]. Some of
these deleterious effects of prenatal toluene exposure can
be enhanced by stress [52,87]. Exposure to toluene during
gestation also results in deficient body weight gain and poor
lactation in dams [87].

3.2. Sites of action for toluene

The molecular and cellular targets for abused inhalants
including toluene have been investigated using a variety of
in vitro and in vivo preparations. Not surprisingly, many of
these studies have focused on defining the effects of toluene
on ion channels that are critically involved in regulating
neuronal excitability. As summarized in Table 3, results
from these studies indicate that both voltage-gated and
ligand-gated ion channels are affected by concentrations
of toluene associated with voluntary inhalation of these
substances. In addition, these studies suggest that toluene
and other related solvents possess a surprising degree of
selectivity given their rather simple chemical structure. For
example, toluene was shown to significantly inhibit the
NMDA subtype of glutamate-activated ion channels while
having little effect on the closely-related AMPA subtype of
ionotropic glutamate receptors [6,36]. Moreover, within the
NMDA family, receptors composed of the GluN2B subunit
were considerably more sensitive to toluene inhibition
than other NMDA receptor subtypes. A similar effect was
observed for nicotinic acetylcholine receptors (nAchRs),
where α4β2 receptors were much more sensitive to toluene
inhibition than α7 nAchRs [5]. Amongst the P2X family of
ATP-gated channels, toluene inhibits the function of some
subtypes (P2X2, P2X4) but enhances currents through P2X3
containing receptors [98]. These findings suggest that there
are distinct sites of action for toluene on individual channel
subunits and that regional and anatomical differences in
subunit expression are important determinants of solvent
action.

After the identification of some of toluene’s molecular
actions, several research groups studied metabolic and
neurochemical changes associated with toluene exposure.
For example, using microPET [82], it has been shown that
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Table 2: Preclinical studies on toluene’s effects.
Acute effects Preparation Species Refs.

Reinforcing properties Intravenous self-administration Mice [13]
Conditioned place preference Rats [46]

Mice [43]

Discriminative stimulus effects Toluene acts as a discriminative stimulus Mice [85,86]
Amphetamine-like effects Mice [14]
CNS depressant-like effects Mice [15,77]

Anxiolytic-like Burying behavior test (decreased cumulative time burying the prod) Mice [63,74]
Elevated plus maze (increased number of entries and time spent in open arms) Mice [24]
Geller-Seifter conflict test (active response reinstatement after punishment) Rats [45,96]

Motor incoordination Rota rod test Rats [61]

Anticonvulsant PTZ-induced seizures (decreased percentage of convulsing animals) Rats [96]
NMDA-induced seizures (decreased percentage of convulsing animals;
protection against death)

Mice [29,35]

Nicotine-, picrotoxin- and bicuculline-induced seizures (increased
seizure threshold)

Mice [29]

Antidepressant-like Forced swimming test and tail suspension test (decreased immobility) Mice [39]

Altered locomotion Open field test Rats [9,17,49,54,78]
Low concentrations: increased locomotion
High concentrations: decreased locomotion

Impaired learning and memory Passive avoidance test (long-term memory) Rats [54]
Novel object recognition test (reduced novel object exploration) Rats [54]

Mice [60,94]
Pronociception Hot plate and tail flick tests (increased latency to response) Mice [38,74]
Antinociception Foot-shock test (increased threshold to elicit a response Rats [54]
Impulsivity-like Waiting-for-reward task Mice [21]
Social interaction Social interaction test (reduced contact with a partner) Mice [60]

Chronic exposure
Impaired learning and memory Morris water maze; object recognition, passive avoidance test Rats [54,92]
Sensitization to hyperlocomotion Open field test Mice [22]

Prenatal exposure
Increased locomotor activity Open field test Rats [51]

Delayed reflexes Postnatal test battery (surface righting, air righting, auditory startle) Rats [51]

Impulsivity-like Waiting-for-reward task Rats [21]

Sensitization to hyperlocomotion Open field test (amphetamine induced locomotion) Rats [19]

acute and repeated toluene exposure markedly reduces the
metabolic function in rat brain. This effect was regionally
specific, with the hippocampus, pons, and thalamus as
the more affected areas. Other researchers have found
that toluene produces increases in dopamine release and
dopaminergic neurons’ activity [10,47,79,80,97], regional
brain changes in glutamate, glutamine, and monoamine
levels [57,76,95], as well as changes in NMDA and GABAA

receptor densities or subunit composition [32,59,93].
Toluene’s apoptotic effects have also been described [100]
and, interestingly, these actions can be lessened by placing
animals in enriched environments [75]. Recent studies show
that repeated toluene exposure also results in epigenetic
changes that might have a long-term impact on gene
expression and behavior [54,81]. Other effects of toluene
such as increased oxidative stress seem to contribute to the
detrimental effects of prolonged toluene exposure [56].

In conclusion, the last 15 years have provided extensive
evidence of the molecular, cellular, and systemic actions of
toluene and have firmly established solvents as important
drugs of abuse. Despite these advances, it remains an
interesting challenge to identify the most relevant molecular
mechanisms that underlie the specific effects of toluene
and related solvents. There is a recent evidence indicating
that different neurotransmitter systems are activated at
different doses/concentrations of toluene [73] and it is
likely that similar differences exist regarding acute versus
chronic exposures to these solvents. Of particular interest in
understanding the long-term effects of inhalant use is how
exposure to these agents during adolescence impacts normal
brain development, cognition, and behavior in adults. This
is especially relevant for frontal cortical areas that undergo
significant maturation during the time that many solvent
users are experimenting with these agents. In addition, there
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Table 3: Summary of the effects of toluene on recombinant
and native ion channels.
Receptor
name

Subunit
composition

Effect Ref.

AMPA GluA1; GluA1/2 None [36]
GluA6 Increase [36]
Native neuron None/decreasea [6,11]

NMDA GluN1/N2A Decrease [36]
GluN1/N2B Decrease [36]
GluN1/N2C Decrease [36]
Native neuron Decrease [4]

GABA α4β2 Increase [12]
Native neuron Increaseb [11,64,65]

Glycine α7 Increase [12]
5HT3 5HT3 Increase [64]

nAchR α4β2 Decrease [5,4]
α4β2 Decrease [5]
α4β2 Decrease [5,4]
α4β2 Decrease [5]
α7 Decrease [5,4]
Native neuron Decrease [5]

ATP P2X2 Increase [98]
P2X2/3 Increase [98]
P2X3 Decreased [98]
P2X4 Increase [98]
P2X4/6 Increase [98]

Sodium channels Nav1.5 (cardiac) Decrease [37]
Native cardiac Decrease [37]
Nav1.4 (skeletal) Decrease [44]
Native neuron None [11]

Ca++ channels Cav1/Cav2 Decrease [83,90]
Native neuron Decrease [83]

K+ channels mSlo Decrease [40]
Girk2 Decrease [40]
Girk1/2; Girk1/4 None [40]

Gap junction Native (HEK cell) Decrease [41]
aToluene inhibition of AMPA EPSCs [11] was endocannabinoid
dependent.
bToluene enhanced the frequency but not amplitude of GABA
IPSCs [65].

is a clear evidence that stress affects these same frontal
areas suggesting that the deleterious effects of inhalants
may be exacerbated by environmental and psychosocial
factors (e.g., homelessness, poor family structure, etc.)
often associated with the use of abused inhalants. From an
experimental standpoint, there is also a need to conduct
studies utilizing relevant mixtures of solvents. To date,
most animal-based reports have used single compounds
with toluene being considered the representative volatile
solvent. But it is clear that many individuals who misuse
inhalants are exposed to complex mixtures of solvents that
may produce effects that are different from those observed
with toluene alone. While this presents a more challenging
experimental design, it is likely to be more informative

and may identify novel sites or mechanisms of action that
would not be revealed with studies of single solvents.
Finally, efforts are needed to better understand how other
commonly used drugs of abuse may affect the actions of
abused inhalants. With the recent discovery of the neural
targets of toluene and related solvents, it is clear that there is
a substantial overlap in the cellular and molecular actions of
these agents with other drugs such as alcohol, nicotine, and
marijuana. These findings suggest that the effects of abused
inhalants on brain circuits that underlie reward, cognition,
and behavioral control may be amplified or altered by
chronic use of these other commonly abused substances.
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N. Páez-Martı́nez, S. E. Bowen, and S. L. Cruz, Long-term
behavioral consequences of prenatal binge toluene exposure in
adolescent rats, J Drug Alcohol Res, 3 (2014), art235841.
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