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Background and aims: Childhood trauma is associated with increased levels of 
anxiety later in life, an increased risk for the development of substance use disorders, 
and neurodevelopmental abnormalities in the amygdala and frontostriatal circuitry. The 
aim of this study was to investigate the (neurobiological) link among childhood trauma, 
state anxiety, and amygdala-frontostriatal activity in response to cocaine cues in regular 
cocaine users.

Methods: In this study, we included 59 non-treatment seeking regular cocaine users 
and 58 non-drug using controls. Blood oxygenation level-dependent responses were 
measured using functional magnetic resonance imaging while subjects performed a cue 
reactivity paradigm with cocaine and neutral cues. Psychophysiological interaction anal-
yses were applied to assess functional connectivity between the amygdala and other 
regions in the brain. Self-report questionnaires were used to measure childhood trauma, 
state anxiety, drug use, drug use severity, and craving.

results: Neural activation was increased during the presentation of cocaine cues, in a 
widespread network including the frontostriatal circuit and amygdala in cocaine users 
but not in controls. Functional coupling between the amygdala and medial prefrontal 
cortex was reduced in response to cocaine cues, in both cocaine users and controls, 
which was further diminished with increasing state anxiety. Importantly, amygdala-striatal 
connectivity was positively associated with childhood trauma in regular cocaine users, 
while there was a negative association in controls. At the behavioral level, state anxiety 
was positively associated with cocaine use severity and craving related to negative 
reinforcement.

conclusion: Childhood trauma is associated with enhanced amygdala-striatal connec-
tivity during cocaine cue reactivity in regular cocaine users, which may contribute to 

http://www.frontiersin.org/Psychiatry/
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyt.2018.00070&domain=pdf&date_stamp=2018-03-12
http://www.frontiersin.org/Psychiatry/archive
http://www.frontiersin.org/Psychiatry/editorialboard
http://www.frontiersin.org/Psychiatry/editorialboard
https://doi.org/10.3389/fpsyt.2018.00070
http://www.frontiersin.org/Psychiatry/
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:amkaag@gmail.com
https://doi.org/10.3389/fpsyt.2018.00070
https://www.frontiersin.org/Journal/10.3389/fpsyt.2018.00070/full
https://www.frontiersin.org/Journal/10.3389/fpsyt.2018.00070/full
https://www.frontiersin.org/Journal/10.3389/fpsyt.2018.00070/full
https://www.frontiersin.org/Journal/10.3389/fpsyt.2018.00070/full
https://www.frontiersin.org/Journal/10.3389/fpsyt.2018.00070/full
http://loop.frontiersin.org/people/118544
http://loop.frontiersin.org/people/104827
http://loop.frontiersin.org/people/52852


2

Kaag et al. Childhood Trauma, State Anxiety, and Addiction

Frontiers in Psychiatry | www.frontiersin.org March 2018 | Volume 9 | Article 70

increased habit behavior and poorer cognitive control. While we cannot draw conclu-
sions on causality, this study provides novel information on how childhood trauma may 
contribute to the development and persistence of cocaine use disorder.

Keywords: cocaine addiction, anxiety, childhood trauma, functional connectivity, ventral striatum, amygdala, 
dorsal medial prefrontal cortex, negative reinforcement

inTrODUcTiOn

Substance use disorder (SUD) is characterized by compulsive 
drug use, loss of control in limiting intake, and emergence of 
a negative emotional state when access to the drug is denied  
(1, 2). Through the process of negative reinforcement, negative 
emotional states are suggested to induce craving and drug taking 
behavior in substance-dependent individuals (1–7). Supporting 
the role of stress in the development of SUD, childhood trauma 
(as an indicator of early life stress) is associated with a greater 
likelihood of developing an SUD (8–15). More specifically, a 
history of childhood trauma is associated with an increased risk 
to transition from recreational to compulsive substance use (16), 
reduced abstinence motivation (17), and an increase in with-
drawal symptoms during early abstinence (18). In addition to 
childhood trauma, acute negative emotional states such anxiety 
have consistently been associated with SUD (19–23). Altogether, 
childhood trauma and negative emotional states are suggested to 
be involved in the development and persistence of SUD, but the 
neural pathways that underlie this relationship have so far been 
unexplored.

However, extensive evidence that childhood trauma induces 
neurodevelopmental changes within the prefrontal cortex 
(24–28), striatum (26, 29–31), and the amygdala (26, 28, 32, 33). 
While the frontostriatal circuit plays a crucial role in drug-reward 
anticipation and inhibitory control (34, 35), it is the amygdala 
that has been suggested to underlie negative reinforcement in 
SUD (34, 36). Several cue reactivity studies have indeed demon-
strated increased amygdala activation in response to substance-
related cues, supporting the role of the amygdala in drug-related 
behavior (37–39). However, we have recently demonstrated that 
the amygdala in regular cocaine users is also hyperresponsive to 
negative emotional stimuli in general (40, 41), which is suggested 
to be normalized by substance intake (42). However, it is still 
unclear how the amygdala modulates frontostriatal processing of 
drug-related cues and how this is related to childhood trauma 
and negative emotional states. The aim of this study is therefore 
to further explore this relationship in a sample of male regular 
cocaine users. Because most previous research focused on male 
cocaine users, and cocaine use is more than twice as prevalent 
among males then females (43), we focused this research on male 
cocaine users only.

Previous studies have demonstrated that the amygdala receives 
input from several prefrontal regions and in turn projects to 
widespread striatal domains (44). In this way, the amygdala can 
modulate striatal output during reward learning and performance 
(45, 46). By using psychophysiological interaction (PPI) analyses 
to identify task-related changes in functional connectivity (47), 
it has been demonstrated that impaired functional coupling 

between the amygdala and prefrontal cortex is negatively asso-
ciated with cognitive control over negative emotions (48, 49), 
whereas impaired functional coupling between the amygdala 
and striatum is negatively associated with increased risk seeking 
behavior (50). In the current study, we used PPI (regression) 
analyses to investigate how cocaine cues alter the functional 
connectivity between the amygdala and frontostriatal network 
and how this is related to childhood trauma and state anxiety, 
as an index of negative emotional states. On the basis of previ-
ous research, we expected that cocaine cues would impair the 
functional connectivity between the amygdala and frontostriatal 
circuit and that this would deteriorate depending on the level of 
childhood trauma and state anxiety.

sUBJecTs anD MeThODs

Participants
A total of 66 non-treatment seeking male regular cocaine users 
and 66 non-drug using controls were included in this study. A 
total of 7 CU and 8 HC were excluded because of MRI artifacts 
or missing values of the relevant questionnaires, resulting in the 
inclusion of 58 controls and 59 cocaine users in the analyses. 
All participants were males (aged 18–50  years) recruited 
through local advertisement in the greater Amsterdam area 
in the Netherlands. Inclusion criteria for cocaine users were 
snorting cocaine at least once per week for a minimum period 
of 6 months. General exclusion criteria were major medical or 
neurological disease, lifetime history of psychotic or bipolar 
disorder or the presence of contraindications to MRI scanning 
(e.g., claustrophobia or implanted ferromagnetic objects), the 
use of antidepressants and/or antipsychotics, and a positive urine 
screening on opioids. Control subjects were also excluded if they 
met DSM-IV criteria for lifetime substance abuse or depend-
ence or currently took any psychotropic medications other than 
antidepressants or antipsychotics. The study was approved by 
the Ethical Review Board of the Academic Medical Centre of 
the University of Amsterdam, the Netherlands. All subjects gave 
written informed consent.

general Procedure
After participants arrived at the research center, they were 
informed about all study procedures after which they gave writ-
ten informed consent. After they completed the demographic 
and clinical assessment, they were asked to provide a urine sam-
ple to test for the presence of cocaine, opioids, amphetamines, 
and alcohol metabolites. After the MRI scan, all participants 
were asked to validate the neutral and cocaine pictures on a 
computer.
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clinical and Demographic assessment
Participants were psychiatrically evaluated with the Mini-
International Neuropsychiatric Interview [MINI (51)] on the pres-
ence of lifetime substance abuse or dependence, depressive episodes, 
and anxiety disorders. Childhood trauma was quantified using 
the Dutch version of the Brief Childhood Trauma Questionnaire 
[CTQ (52)]. The CTQ consists of five subscales, which together 
make a total score of childhood trauma severity. For each subscale, 
clinical cutoff scores can be used to differentiate between none to 
low and moderate to severe emotional abuse (cutoff ≥ 13), physical 
abuse (cutoff ≥ 10), sexual abuse (cutoff ≥ 8), emotional neglect 
(cutoff ≥ 15), and physical neglect (cutoff ≥ 10) (53). State anxiety, 
as a measure of negative emotional states, was quantified using the 
state-trait anxiety inventory [STAI (54)]. A cutoff point of 39–40 is 
normally used for clinically significant symptoms of state anxiety 
(55–57). Depressive symptoms were further assessed using the 
Beck depression inventory (58). Premorbid intelligence (IQ) was 
assessed using the Dutch Adult Reading Test [DART (59)]. Cocaine 
use, in addition to alcohol, cannabis, and NDMA use in the 
6 months before study inclusion was quantified using the timeline 
follow back procedure (60). The drug use disorder identification 
test (DUDIT) was used to assess cocaine use severity (61). Finally, 
the desire for drug questionnaire (DDQ) was used to measure 
the desire and intention to use cocaine (DDQ-desire), the use of 
cocaine to relief negative states (DDQ-negative reinforcement), 
and the perceived control over cocaine use (DDQ-control) (62).

experimental Paradigm
In this study, we used a modified version of the event-related cue 
reactivity paradigm previously implemented by Cousijn et  al. 
(63), using full-color cocaine-related pictures (n = 46), neutral 
control pictures (n = 46), and target pictures (n = 12). Cocaine 
pictures were photos of cocaine and individuals snorting cocaine. 
Neutral control pictures were photos of individuals and objects 
visually matched to the cocaine pictures on color, composition, 
and the type of gesture (passive or active), but without any referral 
to cocaine or cocaine use. Target pictures were photos of animals. 
The pictures are available on request. Participants were asked to 
pay attention to the pictures. To ensure maintained attention, they 
were instructed to press a key on a response box when they saw 
the animal. Each image was presented for 4 s and was preceded by 
a fixation-cross that lasted on average 4 s, jittered between 2 and 
6 s. The task had a total duration of approximately 14 min. The 
cocaine, control, and animal pictures were presented in a same 
semi-random order (with a maximum of three images of the same 
category in a row) for each participant. Images were projected on 
a screen viewed through a mirror attached to the MRI head coil. 
Craving was assessed inside the MRI scanner, at baseline and at 
the end of the experimental paradigm, using a visual analogue 
scale ranging from 0 (not at all) to 10 (extremely), asking “How 
much do you crave for cocaine right now?”

Validation of the cocaine and neutral 
cues
After the MRI scan, all participants performed an image-rating 
task outside the MRI scanner. In this task, they had to rate the 

images that were presented inside the MRI scanner on how much 
it induced craving and arousal, using a VAS, ranging from 1 to 10.

Behavioral Data analysis
Group differences in demographic and clinical characteristics 
were assessed using independent samples t-tests or non-
parametric tests when appropriate, using SPSSv22 (Statistical 
Package for the Social Science). Data are presented as mean ± SD 
or medians ± interquartile range (ICQ), where appropriate.

Repeated measures (RM) ANOVAs, with stimulus type as 
RM, group as an independent variable and stimulus rating as a 
dependent variable, were applied to test the interaction between 
group and stimulus type on the rating of the stimuli.

Within cocaine users, partial correlations were computed 
between state anxiety (controlled for childhood trauma) or 
childhood trauma (controlled for state anxiety) and cocaine use 
severity (DUDIT scores), monthly cocaine use, and the desire 
for cocaine (mean scores on the DDQ-desire, DDQ-negative 
reinforcement and DDQ-control).

Changes in self-reported craving during the cue reactivity 
paradigm were tested using a RM ANOVA, with time (prescan-
ning or postscanning) as the RM. In addition, childhood trauma, 
state anxiety, and its interaction term were entered in the model to 
test the relation between cue-induced craving and these variables.

Functional Magnetic resonance imaging 
(fMri) Data acquisition and analysis
Images were acquired on a 3.0-T Achieva full-body scanner 
(Philips Medical Systems, Best, the Netherlands) using a 32 
channel SENSE head coil. Echo planar images were taken 
covering the whole brain, with a total of 37 ascending axial 
slices (3 mm × 3 mm × 3 mm voxel size; slice gap 3 mm; TR/
TE 2,000  ms/28  ms; matrix 80  ×  80). Also a T1-3D high-
resolution anatomical scan (TR/TE 8.2/3.7; matrix 240  ×  187; 
1 mm × 1 mm × 1 mm voxel; transverse slices) was taken. fMRI 
data were analyzed using SPM8. Preprocessing included realign-
ment, slice-time correction, co-registration of the structural 
and functional scans, normalization to MNI space based on 
the segmented structural scan, and smoothing with a Gaussian 
kernel of 8 mm full-width at half maximum. First-level models 
included separate regressors for the cocaine cues, control cues, 
and targets. These regressors were convolved with the canonical 
hemodynamic response function. Six realignment parameters 
were included as regressors of no interest. A high pass filter 
(1/128  Hz) was included in the first-level model to correct for 
low-frequency signal drift.

The contrasts for cocaine and control cues were entered in 
a second level full-factorial design. First, we tested for a group 
by stimulus type interaction effect. Second, we tested a group 
by stimulus type by childhood trauma (CTQ) by STAI-state 
interaction effect, by adding the total CTQ scores and STAI-state 
z-scores and their interaction term as a covariate in the second-
level model.

To investigate whether and how cocaine cues alter the func-
tional coupling between the amygdala and other brain regions, 
we used generalized psychophysiological interaction analysis 
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TaBle 1 | Demographic and clinical information.

controls (n = 58) cocaine users (n = 59) p Value

Age 30.5 ± 8.1 31.4 ± 7.6 n.s.
IQ 104.7 ± 9.0 100.2 ± 8.4 0.01
Childhood trauma—total score 33.5 ± 7.5 42 ± 14
Childhood trauma—number of maltreatment categories <0.001

0 maltreatment categories 77.6% (n = 45) 37.3% (n = 22) 
1 maltreatment categories 10.3% (n = 6) 33.9% (n = 20)
2 maltreatment categories 12.1% (n = 7) 13.6% (n = 8)
3 maltreatment categories 0% 11.9% (n = 7)
4 maltreatment categories 0% 0%
5 maltreatment categories 0% 3.4% (n = 2)

Childhood trauma—types maltreatment (moderate/severe)
Emotional abuse 3.4% (n = 2) 16.9% (n = 10) 0.029
Physical abuse 1.7% (n = 1) 5.1% (n = 3) n.s.
Sexual abuse 1.7% (n = 1) 13.6% (n = 8) 0.017
Emotional neglect 13.8% (n = 8) 35.6% (n = 21) 0.006
Physical neglect 13.8% (n = 8) 42.4 (n = 25) 0.001

State anxiety (total score) 28 ± 8 35 ± 16 <0.001
State anxiety (prevalence of clinically significant symptoms) 10.3% (n = 6) 34% (n = 20)
Lifetime prevalence of anxiety disorder 1.7% (n = 1) 6.8% (n = 4)
Beck Depression Inventory 2.75 ± 3.45 10.62 ± 6.97 <0.001
Lifetime prevalence of major depressive disorder 6.8% (n = 4) 34.4% (n = 20) <0.001
Weekly alcohol intake 3 ± 5.5 20 ± 22.5
Lifetime alcohol abuse or dependence (DSM-IV) 0% 32.2% (n = 19)
Cocaine use—g/month – 7.33 ± 6.08
Cocaine use—days/month – 8.50 ± 5.67
Cocaine use—duration (years) – 6.00 ± 12.00
Cocaine use—age of onset – 19.00 ± 4.00
Cocaine use severity – 18.4 ± 5.83
Lifetime cocaine abuse or dependence (DSM-IV) – 93% (n = 56)
Desire for cocaine use questionnaire

Desire – 2 ± 2
Negative reinforcement – 2.5 ± 2
(Loss of) control – 3.80 ± 1.51

Weekly cannabis use – 38.9% (n = 23)
Lifetime cannabis abuse or dependence (DSM-IV) – 28.8% (n = 17)
MDMA use in the last 6 months – 49.1% (n = 29)
Lifetime MDMA/XTC abuse or dependence (DSM-IV) – 8.5% (n = 5)
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(64) with the left and right amygdala as seed regions. This type of 
analysis allows investigating changes in functional connectivity 
with a seed region (in this case the amygdala) related to a certain 
psychological variable (in this case, the presentation of either a 
cocaine-related or neutral stimulus). The time series of the first 
eigenvariate of the blood oxygenation level-dependent signal 
were temporally filtered, mean corrected, and deconvolved to 
generate the time series of the neuronal signal for the left and 
right amygdala for each individual subject. The interaction 
term—PPI—was computed by multiplying the time series from 
the psychological regressors with this physiological variable. 
First, we tested a group by stimulus type interaction effect on 
functional connectivity. To assess how differences in functional 
connectivity during cue reactivity are related to state anxiety, 
childhood trauma, or the combination of both, the total CTQ 
scores and STAI-state z-scores and their interaction term were 
entered as covariates in the PPI analysis.

Whole-brain second-level analyses were family-wise error 
(FWE) rate corrected on cluster level (p < 0.05), with an initial 
height threshold on voxel level of p  <  0.001. A small-volume 
correction was applied for the amygdala and ventral striatum 

(p  <  0.05) because of the a  priori role in cue reactivity. These 
region of interest analyses were few corrected at peak level, and 
only clusters with a minimum cluster size of 10 are reported. 
The amygdala was defined based on the automatic anatomical 
labeling (AAL) as implemented in SPM8. Because the AAL 
atlas does not include the VS, the VS was defined as the nucleus 
accumbens from the Harvard-Oxford subcortical structure prob-
ability atlas. For all analyses, only in case of a significant effect, 
the appropriate within-group analyses were performed. In case 
of a non-significant interaction effect, only the main effects are 
reported.

resUlTs

Demographic and clinical characteristics
For all demographic and clinical characteristics, see Table 1. All 
participants were from north-west European descent. Groups 
were of similar age (F1,115 = 0.01, p = 0.92), but cocaine users had 
significantly lower IQ scores (F1,115 = 6.82, p = 0.010). Cocaine 
users had significantly higher scores on the CTQ compared to 
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FigUre 1 | Main effect of cue reactivity. Compared to controls, cocaine 
users show enhanced cue reactivity within the dorsal and ventral anterior 
cingulate cortex, the bilateral ventral striatum, the left amygdala and right 
hippocampus/parahippocampal gyrus, and right occipital cortex.
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controls (F1,115 = 19.97, p < 0.001). More specifically, based on the 
clinical cutoff scores (53), cocaine users reported a significantly 
higher prevalence of moderate to severe childhood trauma 
on all categories (emotional and sexual abuse, emotional and 
physical neglect) except physical abuse (χ2 = 24.5, p < 0.001). 
The total STAI-state score was significantly higher in cocaine 
users compared to controls (F1,115  =  19.99, p  <  0.001). The 
prevalence of clinically significant symptoms of state anxiety 
was 34% (n = 20) in cocaine users and 10.3% (n = 6) in non-
drug using controls. However, the lifetime prevalence of an 
anxiety disorder did not differ between groups. As expected, 
scores for childhood trauma and state anxiety were significantly 
correlated (r  =  0.276 and p  =  0.034). Lifetime prevalence of 
depressive episodes (χ2  =  13.45, p  <  0.001) and BDI scores 
(F1,113 = 58.5, p < 0.001) were also higher among cocaine users 
compared to non-drug using controls. Moreover, BDI scores 
were significantly and positively correlated to state anxiety 
(r = 0.53, p < 0.001).

Cocaine users used on average 7.33  ±  6.08  g of cocaine 
per month, on 8.50  ±  5.67  days, were using regularly for 
6.00 ± 12.00 years and started using at 19.00 ± 4.00 years of age. 
The majority (93%) of the cocaine users met DSM-IV criteria 
for lifetime cocaine abuse or dependence and reported a mean 
total DUDIT score of 18.4  ±  5.83. Mean scores on the DDQ 
subscales were 2 ± 2 for DDQ-desire, 2.5 ± 2 for 2 DDQ-negative 
reinforcement, and 3.80 ± 1.51 for DDQ-control. Of all cocaine 
users, 39.7% (n = 23) used cannabis on a weekly basis or more, 
and 28.8% (n = 17) met the DSM-IV criteria for lifetime cannabis 
abuse or dependence. Moreover, 50% (n = 29) used MDMA in 
the last 6 months at least once and 8.5% (n = 5) met the DSM-IV 
criteria for lifetime XTC/MDMA abuse or dependence. Finally, 
35.6% (n  =  21) consumed more than 21 units of alcohol per 
week and 32.2% (n = 19) met the DSM-IV criteria for lifetime 
alcohol abuse or dependence. The urine screens revealed that 
none of the cocaine users scored positive on alcohol or opioids, 
4 scored positive on amphetamine metabolites, and 29 scored 
positive on cocaine metabolites. However, because cocaine and 
amphetamine can be detected in urine of regular cocaine users 
up to 12 days after use, individuals with a positive urine screening 
were not excluded from the analyses.

State anxiety (controlled for childhood trauma) was sig-
nificantly correlated with cocaine use severity (DUDIT: r = 0.38, 
p = 0.0023) and craving related to negative reinforcement (DDQ-
negative reinforcement: r = 0.39, p = 0.002) but not with monthly 
cocaine use or craving related to desire and loss of control. There 
was no significant correlation between childhood trauma and 
cocaine use, cocaine use severity, or craving for cocaine.

cue-induced craving and Postexperiment 
Validation of cocaine cues
Repeated measures ANOVAs showed that there was a significant 
group by time (before and after cue reactivity) interaction effect 
on craving (F1,112 = 18.78, p < 0.001). A within-group follow-up 
tests confirmed that only in cocaine users, and not in non-drug 
using controls, craving for cocaine significantly increased during 
the cue reactivity task (F1,57 = 22,17, p < 0.001). Within cocaine 

users, there was no statistically significant interaction with child-
hood trauma or state anxiety.

Postscanning validation of the neutral and cocaine cues has 
been assessed in 41 cocaine users and 43 controls. RM ANOVAs 
demonstrated that there was a significant group by stimulus 
type interaction effect on craving (F1,82 = 68.78, p < 0.001) and 
arousal (F1,70 = 31.58, p < 0.001). Within-group follow-up analy-
ses demonstrated that cocaine cues were rated as significantly 
more arousing than neutral cues in cocaine users (F1,35 = 43.63, 
p  <  0.001; mean rating cocaine cues: 4.35  ±  1.97; mean rat-
ing neutral cues: 1.97 ±  1.10) but not in controls (F1,35 =  0.28, 
p = 0.60; mean rating cocaine: 1.68 ± 1.00; mean rating neutral 
cues: 1.83 ± 1.23). Similarly, cocaine cues were rated as signifi-
cantly more craving inducing than neutral cues in cocaine users 
(F1,40 = 62.43, p < 0.001; mean rating cocaine cues: 4.56 ± 2.17; 
mean rating neutral cues: 1.86  ±  1.13) but not in controls 
(F1,42  =  3.44, p  =  0.07; mean rating cocaine cues: 1.07  ±  0.22; 
mean rating neutral cues: 1.21 ± 0.57). These analyses confirm 
that cocaine pictures (and not neutral pictures) elicited strong 
feelings of craving and arousal in cocaine users only.

Differences in neural activation related  
to cocaine cues
Whole-brain analysis showed that there were significant group 
by stimulus type interaction effects. Compared to neutral cues, 
cocaine cues elicit greater activation in a wide range of brain 
regions in cocaine users compared to control (Figure 1; Table 2). 
These regions included the left orbital and bilateral superior 
frontal cortex, the left and right hippocampus, the right occipital 
cortex, and the bilateral nucleus accumbens. Within-group 
analysis showed that, in cocaine users, cocaine cues elicited 
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TaBle 2 | Cue reactivity group by stimulus type interaction effect.

cluster size # voxels cluster p value Voxel z value Peak voxel Mni 
coordinates

Voxel region

cocaine > neutral
Cocaine usersb 3,377 <0.001 >9.99 −2 48 −10 L Medial orbital frontal cortex

7.36 0 36 −10 R Medial orbital frontal cortex
6.19 −16 42 48 L Superior frontal gyrus
5.37 −4 36 4 L Anterior cingulate gyrus
4.18 −24 26 50 L Middle frontal gyrus

344 0.002 7.65 18 −8 −18 R Parahippocampal gyrus
6.87 22 −20 −14 R Hippocampus

792 <0.001 7.5 56 −60 −12 R Inferior temporal gyrus
7.12 24 −98 −2 R Inferior occipital gyrus
6.57 46 −54 −20 R Fusiform gyrus
6.31 46 −54 −26 R Cerebellum
4.91 34 −82 8 R Middle occipital gyrus
4.27 34 −74 −18 R Fusiform gyrus

60 0.002 6.45 −4 6 −6 L Nucleus accumbensa

20 0.006 5.64 6 6 −8 R Nucleus accumbensa

46 <0.001 7.70 −20 −8 −16 L amygdalaa

Controlsb No significant clusters

neutral > cocaine
Cocaine usersb No significant clusters
Controlsb No significant clusters

All results were p < 0.05, cluster level family-wise error corrected with an initial height threshold of p = 0.001 uncorrected.
aPeak value, corrected for the volume of the amygdala or nucleus accumbens, ppeak voxel < 0.05.
bOnly those regions that show a significant group by stimulus type interaction effect are reported.
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greater activation compared to neutral cues, in various brain 
regions including the bilateral nucleus accumbens, the bilateral 
ventromedial and dorsomedial prefrontal cortex, and the right 
(para)hippocampus. There were no brain regions more strongly 
activated by neutral cues compared to cocaine cues in this group. 
Nor was there a significant stimulus effect in the non-drug using 
controls. These results demonstrate that cocaine cue reactivity is 
specific to cocaine users.

Whole-brain regression analysis demonstrated that there 
was a significant group by stimulus type by childhood trauma 
by state anxiety interaction effect in the left precuneus, the left 
posterior cingulate cortex, and the left calcarine cortex. Within-
group analysis demonstrated that this effect was significant only 
in non-drug using controls. All the other main and interaction 
effects were not significant.

Differences in Functional connectivity 
during cocaine cue reactivity
To assess how cocaine cues altered amygdala connectivity, we 
performed a PPI analysis. There was no significant group by 
stimulus type interaction effect on functional connectivity with 
the left amygdala as seed region. However, there was a significant 
main effect of stimulus type as there was a stronger functional 
connectivity of the left amgydala to a variety of other regions 
during the presentation of neutral cues, compared to the pres-
entation of cocaine cues. These regions included bilateral middle 
and superior temporal cortex, insula, and inferior frontal cortex 
(Table 3; Figure 2).

Similar to functional connectivity with the left amygdala as 
seed region, there was no significant group by stimulus type 

interaction effect on functional connectivity with the right 
amygdala as seed region. However, there was a significant effect of 
stimulus type, as there was a stronger functional connectivity of 
the right amygdala to a variety of regions during the presentation 
of neutral cues, compared to the presentation of cocaine cues. 
These regions included the left insula, the left inferior and middle 
frontal cortex, the right superior and middle frontal cortex, and 
the bilateral superior medial frontal cortex and the left middle 
temporal cortex (Table 3; Figure 2).

The Relation between Functional Connectivity and 
Childhood Trauma
There was a significant group by stimulus type by childhood 
trauma interaction effect on functional connectivity between 
the left amygdala and a variety of brain regions during cocaine 
cue reactivity. These regions included the left putamen, the 
right superior motor area, and the right middle cingulate 
cortex. Within-group analyses demonstrated that functional 
connectivity between the left amygdala and bilateral putamen 
and right pallidum was negatively correlated with childhood 
trauma in non-drug using controls. In contrast, functional 
connectivity between the amygdala and the left middle and 
inferior frontal cortex, as well as right putamen and caudate, 
was positively correlated with childhood trauma in regular 
cocaine users. With other words, in cocaine users, the func-
tional connectivity between the amygdala and dorsal striatum 
strengthened during the processing of cocaine cues, whereas 
it reduced during the processing of cocaine cues in non-drug 
using controls. No such effects were evident for functional 
connectivity with the right amygdala as seed region (Table 4; 
Figure 3).
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FigUre 2 | Differences in functional connectivity during cue reactivity. Functional connectivity between the left and right amygdala and a variety of brain regions is 
significantly reduced during the processing of cocaine cues compared to neutral cues. This includes functional connectivity between the left amygdala and the 
bilateral insula, inferior frontal cortex and the temporal cortex as well as functional connectivity between the right amygdala and the left insula, inferior frontal cortex 
and dorsomedial frontal cortex.

TaBle 3 | Differences in amygdala connectivity during the processing of cocaine and neutral cues (in cocaine users).

cluster size # voxels cluster p value Voxel z value Peak voxel Mni 
coordinates

Voxel region

left amygdala
Neutral > cocaine 792 <0.001 4.95 −60 −24 −4 L Middle temporal gyrus

4.07 −46 −18 −8 L Superior temporal gyrus
570 <0.001 4.77 −30 22 −8 L Insula

4.15 −52 18 2 L Inferior frontal gyrus
880 <0.001 4.39 54 −16 −12 Right middle temporal gyrus

4.36 60 −20 −4 R Superior temporal gyrus
774 <0.001 4.13 56 18 6 R Inferior frontal gyrus

3.72 44 18 2 R Insula
3.31 60 6 10 R Rolandic operculum

309 0.008 4.04 −58 −46 34 L Supramarginal gyrus
3.98 −60 −48 38 L Inferior parietal gyrus

Cocaine > neutral No significant clusters

right amygdala
Neutral > cocaine 324 0.003 4.42 −28 24 −6 L Insula

3.6 −44 26 −10 L Inferior frontal gyrus
386 0.001 4.39 −48 −22 −8 L Middle temporal gyrus
209 0.023 4.12 34 44 22 L Middle frontal gyrus

3.27 22 52 24 R Superior frontal gyrus
3.23 30 36 30 R Middle frontal gyrus

195 0.03 4.04 −6 34 44 L Medial frontal gyrus
324 0.003 3.63 6 42 40 R Medial frontal gyrus

Cocaine > neutral No significant clusters

All results were p < 0.05, cluster level family-wise error corrected with an initial height threshold of p = 0.001 uncorrected.
There was no significant group by stimulus type interaction effect on functional connectivity.
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The Relation between Functional Connectivity and 
State Anxiety
For both the left and right amygdala as seed region, there was no 
significant group by stimulus type by state anxiety interaction 
effect. however, there was, a negative correlation between state 
anxiety and functional connectivity of the left amygdala to a 
variety of brain regions during cocaine cue reactivity Figure 4, 
Table 4. These regions included the bilateral dorsal medial fron-
tal cortex, the left inferior frontal cortex, and the left inferior 

and middle temporal cortex. No such effects were evident for 
functional connectivity with the right amygdala as a seed region 
(Table 4; Figure 3).

The Relation between Functional Connectivity 
and a Childhood Trauma by State Anxiety 
Interaction
There was no significant group by stimulus type by CTQ by STAI-
state interaction effect.
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FigUre 3 | Childhood trauma and functional connectivity. There was a significant group by childhood trauma interaction on functional connectivity between the left 
amygdala and the dorsal striatum. While childhood trauma was negatively correlated with functional connectivity between the left amygdala and bilateral dorsal 
striatum in non-drug using controls, childhood trauma was positively correlated with functional connectivity between the left amygdala and left middle frontal cortex 
and right dorsal striatum.

TaBle 4 | Differences in amygdala connectivity during cue reactivity (cocaine versus neutral) and the relation to childhood trauma (CTQ), STAI-state, and its interaction.

cluster size # voxels cluster p value Voxel z value Peak voxel Mni 
coordinates

Voxel region

left amygdala

Group × CTQ
Controls—positive correlationb 364 0.001 4.08 −24 16 0 L Putamen

3.89 16 8 0 R Pallidum
3.64 20 8 −6 R Putamen

Cocaine users—negative correlationb 177 0.039 4.43 −22 46 10 L Middle frontal gyrus
3.53 −32 42 10 L Inferior frontal gyrus

204 0.023 3.82 26 4 −10 R Putamen
3.76 14 14 −2 R Caudate

Group × STAI-state No significant clusters
Main effect STAI-state
Negative correlation 5,230 <0.001 5.01 16 0 50 R Superior frontal gyrus

4.85 −48 −4 30 L Precentral gyrus
4.6 −10 −14 54 L Supplementary motor area
4.53 56 −12 20 R Postcentral gyrus
4.36 −60 8 12 L Inferior frontal gyrus
4.27 −54 −28 48 L Inferior parietal gyrus
4.24 −50 −16 24 L Postcentral gyrus

236 0.012 3.94 −50 −48 −6 L Inferior temporal gyrus
3.65 −54 −46 −4 L Middle temporal gyrus
3.48 −38 −48 −12 L Fusiform gyrus

1,884 <0.001 4.26 14 46 18 R Anterior cingulate gyrus
4.24 10 38 44 R Medial frontal gyrus
3.93 −16 54 22 L Superior frontal gyrus
3.93 −4 46 18 L Medial frontal gyrus
3.81 −10 2 2 L Pallidum

330 0.002 4.09 −32 28 24 L Inferior frontal gyrus
3.54 −36 36 22 L Middle frontal gyrus

Positive correlation No significant clusters
Group × CTQ × STAI-state No significant clusters

right amygdala

No significant main or interaction effects

All results were p < 0.05, cluster level family-wise error corrected with an initial height threshold of p = 0.001 uncorrected.
bOnly those regions that show a significant group by stimulus type interaction effect are reported.
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FigUre 4 | State anxiety and functional connectivity. There was a significant 
negative correlation between state anxiety and functional connectivity 
between the left amygdala and a variety of brain regions including the dorsal 
and ventral medial prefrontal cortex.
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DiscUssiOn

In this study, we investigated differences in functional connec-
tivity between the amygdala and other brain regions during a 
cocaine cue reactivity task in male cocaine users and non-drug 
using controls. In addition, we assessed how these differences 
were related to childhood trauma and state anxiety. On the neural 
level, we demonstrated that cocaine cues, compared to neutral 
cues, elicited stronger activation of the amygdala, nucleus accum-
bens, and dmPFC and vmPFC in cocaine users only, replicating 
the findings of several previous studies (37–39). In addition, 
we demonstrated that cocaine cues, compared to neutral cues, 
reduced functional coupling between the amygdala (bilaterally) 
and the dmPFC, inferior frontal cortex, and the insula in addition 
to some temporal and parietal regions in both cocaine users as 
non-drug using controls. The amygdala has strong reciprocal 
connections with the vmPFC and dmPFC, via which it can 
modulate top–down processing (44, 65). Moreover, there was a 
negative correlation between state anxiety and functional con-
nectivity between the left amygdala and the dmPFC and vmPFC, 
and dorsal and ventral striatum. The dmPFC, which includes the 
supplementary motor area, has as a critical role in performance 
monitoring and cognitive control (66) and has been associated 
with impaired inhibitory control in addicted individuals (67). 
The functional coupling between the amygdala and frontal cortex 
also plays an important role during emotion regulation (48, 68). 
Hence, impaired amygdala-mPFC functional connectivity may 
reflect impaired emotional regulation.

The amygdala, in addition to receiving input from frontal 
cortical regions, projects to widespread striatal domains (44). 
In this way, the amygdala can modulate striatal output during 
reward learning and performance (45, 46). It has been suggested 
that reduced amygdala-striatal connectivity during emotional 
processing is associated with reduced risk aversion in healthy 
individuals (50), which may be related to an overreliance on habit 
behavior (69). Hence, impaired amygdala-striatal functional con-
nectivity is suggested to reflect impaired reward processing.

In contrast to our hypothesis, cocaine cue-related changes in 
functional connectivity did not differ between cocaine users and 
non-drug using controls. Therefore, the finding that cocaine cues 
reduce the function connectivity between the left amygdala and 
dmPFC and striatum in both cocaine users and controls, and 
that this is further deteriorated in individuals with high state 
anxiety, may reflect impaired cognitive control and reduced risk 
aversion in response to stimuli with a negative emotional valence 
in general instead of being specific to cocaine cues or individu-
als with a cocaine use disorder. To assess whether the relation 
between state anxiety and amygdala-frontostriatal connectivity 
during cue reactivity reflects general emotional processes or 
cocaine-specific processes, future studies should include cues 
with a negative emotional valence in addition to cocaine cues 
and neutral cues.

On a behavioral level, however, we found that state anxiety was 
significantly correlated with craving related to negative reinforce-
ment, an effect that has been demonstrated previously in smok-
ers, drinkers, and drug users (19–23). These finding suggest that 
state anxiety is very relevant in the development, continuation, 
and treatment of SUDs, as state anxiety may reduce the ability to 
regulate emotional responses to cocaine-related cues increasing 
the risk of relapse.

Another important finding of the current study is that a his-
tory of childhood trauma is associated with enhanced functional 
connectivity between the left amygdala and dorsal and ventral 
striatum in cocaine users, whereas it is associated with reduced 
functional connectivity between the left amygdala and the dorsal 
and ventral striatum in non-drug using controls. While reduced 
amygdala-striatal connectivity has been suggested to underlie 
reduced risk aversion in healthy participants (50), increased 
amygdala-striatal connectivity has been previously demonstrated 
in pathological gamblers (70) and patients with bipolar disorder 
(71) during reward processing, whereas the control groups in 
these studies consistently showed reduced amygdala-striatal 
connectivity during the processing of reward (70, 71). Since the 
amygdala regulates reward-related signaling in the striatum (72) 
and inhibiting amygdala-striatal connectivity impairs reward 
seeking in rodents (73), enhanced amygdala-striatal connectivity 
during reward processing may underlie impulsive decision mak-
ing (70). Therefore, a negative correlation between childhood 
trauma and amygdala-striatum connectivity during cue reactivity 
in controls and a positive correlation between amygdala-striatum 
connectivity during cue reactivity in cocaine users suggest that 
childhood trauma enhances the reward value of cocaine cues in 
regular cocaine users, whereas it decreases the reward value of 
cocaine cues in non-drug using controls.

Interestingly, enhanced amygdala-striatal connectivity has 
also been reported during the processing of negative emotional 
cues in individuals with a history of childhood trauma (74) and in 
borderline personality disorder (75). In addition, stress has been 
shown to increase amygdala-striatum connectivity and stimulus-
response learning during memory processing in healthy indi-
viduals (76), whereas enhanced amygdala-striatal connectivity 
predicts poorer cognitive control to emotional cues (49). Hence, 
an alternative explanation could be that cocaine cues elicit a stress 
response in cocaine users only, especially in those with a history 
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of childhood trauma, which could underlie enhanced stimulus 
response or habit behavior as well as poorer cognitive control.

While we cannot draw any conclusions on the causal relation 
between childhood trauma, amygdala-striatal connectivity, and 
the development of a cocaine use disorder, various animal studies 
have demonstrated that early life stress induces serotonergic and 
dopaminergic changes within the amygdala and striatum (25, 26, 
30, 31, 77). Interestingly, the findings of this study suggest that 
childhood trauma may differentially affect the amygdala-striatal 
network in individuals at risk versus individuals not at risk for the 
development of a cocaine use disorder. This hypothesis, however, 
needs to be addressed using a longitudinal study design.

Interestingly, state anxiety and childhood trauma were specifi-
cally related to functional connectivity with the left amygdala as 
seed region, whereas no effects were found on functional con-
nectivity with the right amygdala as seed region. While these 
lateralization effects were not expected based on the previous 
research, emotion regulation is suggested to be primarily associ-
ated with left-hemispheric processing of the amygdala and the 
striatum (78–81). Therefore, the current finding that childhood 
trauma and state anxiety are specifically related to left amygdala 
connectivity, which further suggest that these effect mainly reflect 
altered processes of emotion regulation.

The findings of this study could have clinical implications as 
the functional coupling between the amygdala and the frontos-
triatal circuitry may provide us with a novel treatment target. For 
instance, there is an increasing interest in the use of noradrenergic 
receptor antagonists in the treatment of alcohol (82, 83) and cocaine  
(84, 85) use disorder. Interestingly, these receptor antagonists are 
also suggested to reduce amygdala hyperresponsiveness to nega-
tive emotional stimuli (86). Alternatively, repetitive transcranial 
magnetic stimulation of the prefrontal cortex could be used to alter 
the functional coupling between the amygdala and frontostriatal 
circuitry (87). As we demonstrate reduced amygdala-frontostriatal 
coupling mainly within individuals that report high levels of state 
anxiety, interventions that target the amygdala and frontostriatal 
circuitry (including noradrenergic receptor antagonists or rTMS) 
may be especially effective within these subgroups. On the other 
hand, interventions that act on amygdala-striatal connectivity 
may especially be effective in individuals with a cocaine use 
disorder, with a history of childhood trauma.

The current study has several strengths: first, while the neural 
correlates of cue reactivity have been extensively studied in 
alcohol and nicotine use disorder, only a minority of all fMRI 
cue reactivity studies focused on cocaine use disorder (88). This 
study, in a relatively large population of cocaine users, therefore 
adds important novel information to the already existing lit-
erature. Second, studying the functional connectivity between 
the amygdala and frontostriatal circuitry, instead of studying 
responses within these regions per se, is likely to provide a more 
sensitive measure of neural network function (50, 89).

There are, however, also some limitations. As the majority of 
the cocaine users included in the current study were polysubstance 
users, it is unclear whether the findings of the study are specific 
to cocaine users or whether they reflect alterations specific to 
alcohol or cannabis users instead. However, as polysubstance use 
is common among cocaine users in treatment (90), we expect that 

our sample reflects typical cocaine users. Future studies should 
be performed to address whether the relation between childhood 
trauma, state anxiety, and amygdala functional connectivity is 
differentially effected in cocaine users with and without a history 
of polysubstance use.

Moreover, there was a strong and positive association between 
self-reported levels of state anxiety and depressive symptoms. 
Therefore, we cannot exclude the possibility that amygdala-
dmPFC connectivity during cue reactivity is not specifically 
related to state anxiety, but more generally to negative mood 
including both depressive and anxiety symptoms. Finally, 
because cocaine use is much more prevalent among males 
compared to females, only male participants were included in 
the study. Gender differences on cue reactivity are scarce, but 
the few available studies suggest that drug cues induce stronger 
striatal activity or dopamine release in male compared to female 
substance users (91–95). Therefore, it remains to be investigated 
if and how the current findings generalize to female cocaine 
users, especially when taking into account gender differences in 
amygdala lateralization (96, 97). Hence, these results need to be 
replicated in females and other types of substance users as well.

Taken together, our data reveal that childhood trauma is 
related to enhanced amygdala-striatal connectivity during the 
processing of cocaine versus neutral cues in individuals with a 
cocaine use disorder. Enhanced amygdala-striatal connectivity in 
cocaine users may underlie habit behavior and poorer cognitive 
control. In addition, we demonstrate that state anxiety is related 
to reduced amygdala-mPFC connectivity during the processing 
of cocaine versus neutral cues in both cocaine users as controls. 
Because reduced amygdala-mPFC connectivity may underlie 
impaired cognitive control during the processing of stimuli with 
a negative emotional valence, this may further deteriorate cogni-
tive control in cocaine users. Altogether, these findings provide 
novel and insight in the neural mechanisms by which childhood 
trauma and state anxiety may contribute to the development and 
persistence of cocaine addiction. Eventually this may provide us 
with novel pharmaceutical or behavioral treatment strategies that 
target these stress components of cue-induced craving in cocaine 
users.
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